using Logging; using Graph; namespace astar { public class Astar { /* * Resets the calculated previous nodes and distance to goal */ private static void Reset(ref Dictionary nodes) { foreach(Node n in nodes.Values) { n.previousNode = null; n.goalDistance = float.MaxValue; n.timeRequired = float.MaxValue; } } public static Route FindPath(ref Dictionary nodes, Node start, Node goal, Logger? logger) { Route _route = new Route(); logger?.Log(LogLevel.INFO, "From {0:000.00000}#{1:000.00000} to {2:000.00000}#{3:000.00000} Great-Circle {4}", start.lat, start.lon, goal.lat, goal.lon, Utils.DistanceBetweenNodes(start, goal)); Reset(ref nodes); List toVisit = new(); toVisit.Add(start); Node currentNode = start; start.timeRequired = 0; start.goalDistance = Utils.DistanceBetweenNodes(start, goal); while (toVisit.Count > 0 && toVisit[0].timeRequired < goal.timeRequired) { if(currentNode == goal) { logger?.Log(LogLevel.INFO, "Way found, checking for shorter option."); } currentNode = toVisit.First(); logger?.Log(LogLevel.VERBOSE, "toVisit-length: {0} path-length: {1} goal-distance: {2}", toVisit.Count, currentNode.timeRequired, currentNode.goalDistance); //Check all neighbors of current node foreach (Edge e in currentNode.edges) { if (e.neighbor.timeRequired > currentNode.timeRequired + e.time) { e.neighbor.goalDistance = Utils.DistanceBetweenNodes(e.neighbor, goal); e.neighbor.timeRequired = currentNode.timeRequired + e.time; e.neighbor.previousNode = currentNode; toVisit.Add(e.neighbor); } } toVisit.Remove(currentNode); //"Mark" as visited toVisit.Sort(CompareDistance); } if(goal.previousNode != null) { logger?.Log(LogLevel.INFO, "Way found, shortest option."); currentNode = goal; _route.routeFound = true; _route.time = goal.timeRequired; } else { logger?.Log(LogLevel.INFO, "No path between {0:000.00000}#{1:000.00000} and {2:000.00000}#{3:000.00000}", start.lat, start.lon, goal.lat, goal.lon); _route.routeFound = false; return _route; } List tempNodes = new(); tempNodes.Add(goal); while(currentNode != start) { tempNodes.Add(currentNode.previousNode); currentNode = currentNode.previousNode; } tempNodes.Reverse(); for(int i = 0; i < tempNodes.Count - 1; i++) { Edge e = tempNodes[i].GetEdgeToNode(tempNodes[i + 1]); _route.AddStep(tempNodes[i], e); _route.distance += e.distance; } logger?.Log(LogLevel.INFO, "Path found"); if(logger?.level > LogLevel.INFO) { float time = 0; float distance = 0; logger?.Log(LogLevel.DEBUG, "Route Distance: {0} Time: {1}", _route.distance, TimeSpan.FromSeconds(_route.time)); for(int i = 0; i < _route.steps.Count; i++) { Step s = _route.steps[i]; time += s.edge.time; distance += s.edge.distance; logger?.Log(LogLevel.DEBUG, "Step {0:000} From {1:000.00000}#{2:000.00000} To {3:000.00000}#{4:000.00000} along {5}\tafter {6} and {7} m", i, s.start.lat, s.start.lon, s.edge.neighbor.lat, s.edge.neighbor.lon, s.edge.id, TimeSpan.FromSeconds(s.start.timeRequired), distance); } } return _route; } /* * Compares two nodes and returns the node closer to the goal * -1 => n1 smaller n2 * 0 => n1 equal n2 * 1 => n1 larger n2 */ private static int CompareDistance(Node n1, Node n2) { if (n1 == null || n2 == null) return 0; else { if (n1.goalDistance < n2.goalDistance) return -1; else if (n1.goalDistance > n2.goalDistance) return 1; else return 0; } } /* * Compares two nodes and returns the node with the shorter path * -1 => n1 smaller n2 * 0 => n1 equal n2 * 1 => n1 larger n2 */ private static int ComparePathLength(Node n1, Node n2) { if (n1 == null || n2 == null) return 0; else { if (n1.timeRequired < n2.timeRequired) return -1; else if (n1.timeRequired > n2.timeRequired) return 1; else return 0; } } } }